Vail's Grove Cooperative, Inc.

Five Vail Boulevard • Peach Lake Brewster, NY 10509 (914) 669-5100 • Fax: (914) 669-5064 E-mail: VailsGroveCoop@gmail.com

May 15, 2014

Ms. Anne Bittner, M.S.P.H. Sr. Public Health Sanitarian Putnam County Health Department One Geneva Road Brewster, New York 10509

RE: Vail's Grove Cooperative Federal Public Water Supply Identification No. 3902654 Annual Water Quality Report for Year 2013

Dear Ms. Bittner:

Enclosed is a copy of Vail's Grove Cooperative's Annual (2013) Water Quality Report.

As always, if you have any questions, feel free to call this office.

Sincerely,

For The Public Health Committee of the Board of Directors

Cindy R. Battreall
Assistant Secretary
Board of Directors

Cc: New York State Department of Health – Commissioner Att: Director, Bureau of Public Water Supply Protection Flanigan Square, 547 River Street – Room 400 Troy, New York 12180-2216

Northeast Laboratories Incorporated 129 Mill Street Berlin, CT. 06037-9990

VAIL'S GROVE COOPERATIVE, INC.

Five Vail Boulevard
Brewster, New York 10509
PHONE 914-669-5100
FAX 914-669-5064

TO:

All Shareholders/Residents Vail's Grove Cooperative, Inc.

FROM:

The Public Health Committee of the Board of Directors

Vail's Grove Cooperative, Inc.

RE:

Annual Water Quality Report (AWQR)

For Vail's Grove Cooperative For Calendar Year 2013

5 Vail Boulevard Brewster, NY 10509

(Federal Public Water Supply Identification Number 3903654)

DATE:

May 28, 2014

To comply with State regulations, Vail's Grove Cooperative annually issues a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. We test your drinking water in accordance with the requirements of New York State for numerous contaminants including, total coliform, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds (VOC's), total trihalomethanes, synthetic organic compounds (SOC's), and purgeable organic compounds (POC's). Last year, we conducted tests for contaminants, of which none was a level higher than the State allows.

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants, inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

This Annual Water Quality Report (AWQR) is to keep you informed about the water and services delivered to you during calendar year 2013. The Cooperative's goal is to provide a safe and dependable supply of drinking water. Our water source is from three subterranean bedrock wells (each at an approximate depth of 300 feet) located near the pump house at the North end of Vail's Lake Shore Drive. The water is pumped from the wells into two (2) 20,000-gallon storage (40,000 gallons total) tanks after chlorination, and then pumped to the homes and Pavilion of the Vail's Grove community at between 60 and 80 pounds per square inch. NY State certifies operators who serve on our Public

Health Committee who test chlorine levels daily. During 2013 the wells produced and delivered 10,338,000 gallons of potable water. In 2003, The Department of Health completed a Source Water Assessment Summary and Final report regarding the three wells at Vail's Grove. The full report is available at the Vail's Grove Office should you wish to read it.

Some time in the near future, we expect to replace our water storage tanks and associated water delivery equipment at a new Pump House. Approvals for this work are underway by our Engineers.

For more information or to discuss any drinking water issues, feel free to call us at (914) 669-5100, or you may call the Putnam County Department of Health located at One Geneva Road, Brewster, NY 10509 at (845) 803-1370. Kathleen Heuschkel, Vail's Grove's "Principal Operator in Charge" will also answer any questions on drinking water quality. She may be reached (days) at (845) 612-1851. J. Waltzer (Operator) may be reached at (845) 669-8085. P. McGuinness (Operator) may be reached at (845) 669-5548. J. Moore may be reached at (845) 803-2786/(914) 669-9606. Any issues concerning drinking water quality may also be discussed at our regular monthly board meetings on the 3rd Thursday of each month. During Calendar 2014, Ms. K. Heuschkel is assuming the title and duties of Principal Operator.

In the light of recent terrorist activities, in the event of suspected vandalism or sabotage at the pump house: contact Kathleen Heuschkel or the State Police at (845) 279-6161 or the Putnam County Sheriff's Office at (845) 225-4300.

Vail's Grove Cooperative, Inc. routinely monitors (by a laboratory certified by New York State) for various substances and possible contaminants in our drinking water, according to Federal and State laws and on a schedule as determined by the State of New York. Attached tables show results of some of our monitoring from several previous years and list **only detected contaminants**. On the New York State schedule, our water is tested for inorganic contaminants, nitrate, lead and copper, volatile organic contaminants, synthetic organic contaminants, and total trihalomethanes. Our water is tested for coliform bacteria once per month. A coliform violation occurs when a total coliform positive sample is positive for E coli and a repeat total coliform sample is positive, or when a total coliform positive sample is negative for E coli, but a repeat coliform sample is positive for total coliforms and E coli. The MCL for coliform is 0 per 100 ml.

During the year, there were no positive coliform bacteria detected. We also monitored for the following Purgeable Organic Compounds in Drinking Water which were all **below detectable limits:**

Dichlorodifluoromethane, Chloromethane, Vinyl chloride, Bromomethane, Chloroethane, Trichlorofluoromethane, 1,1-Dichloroethene, Methylene Chloride, Trans-1,2-Dichloroethene, 1,1-Dichloroethane, Cis-1,2-Dichloroethene, 2,2-Dichloropropane, Bromochloromethane, 1,1,1,-Trichloroethane, 1,1-Dichloropropene, 1,2-Dichloroethane, Carbon Tetrachloride, Benzene, Trichloroethene, 1,2-Dichloropropane,

Dibromomethane, Cis-1,3-Dichloropropene, Toluene, Trans-1,3-Dichloropropene, 1,1,2-Trichloroethane, 1,3-Dichloropropane, Chlorobenzene, 1,1,1,2-Tetrachloroethane, Ethyl Benzene, m,p-Xylene, Styrene, o-Xylene, 1,1,2,2-Tetrachloroethane, Isopropyl Benzene, 1,2,3Trichloropropane, Bromo Benzene, n-Propyl Benzene, 2-Chlorotoluene, 4-Chlorotoluene, 1,3,5-Trimethyl Benzene, Tert-Butyl Benzene, 1,2,4-Trimethyl Benzene, Sec-Butyl Benzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, p-Isopropyltoluene, 1,2-Dichlorobenzene, n-Butyl Benzene, 1,2,4-Trichlorobenzene, Naphthalene, Hexachlorobutadiene, 1,2,3-Trichlorobenzene, 1,2 Dibromo-3-chloropropane, Methyl Ethyl Ketone, Tetrachloroethene, Total Xylenes, and Methyl tert-Butyl Ether (MTBE),

The following Haloacetic Acids were not detected: Dichloracetic Acid, Monobromoacetic Acid, Monochloracetic Acid, Trichhloriacetic Acid.

In 2011, we also monitored for the following Synthetic Organic Compounds (SOC's) which were all **ND** (non-detectable):

1,2-Dibromoethane (EDB), Glyphosate, Aldicarb, Aldicarb sulfoxide, Aldicarb sulfone, Carbaryl, Carbofuran, 3-Hydroxycarbofuran, Methomyl, Oxamyl(Vydate), Endothall, Diquat, Alachlor, Aldrin, Atrazine, Benzo(a)pyrene, Butachlor, Di(2-ethylhexyl)adipatem Di(2-ethylhexy)phthalate, Dieldrin, Endrin, Heptachlor, Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane (gamma-BHC), Metolachlor(Dual), Methoxychlor, Metribuzin(Sencor), Propachlor, Simazine, Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248, Aroclor 1254, Aroclor 1260, Chlordane, Toxaphene, 2, 4, 5-TP(Silvex), 2, 4-D, Dalapon, Dicamba, Dinoseb, Pentachlorophenol, Picloram.

WE ARE PLEASED TO REPORT THAT VAIL'S GROVE DRINKING WATER CONTINUES TO MEET ALL FEDERAL AND STATE REQUIREMENTS. Last year your tap water met all State drinking water health standards. In 2013, our system did not violate a maximum contaminant level (MCL).

Water Conservation

Because of the recent necessity for water conservation, the Board of Directors has approved a rule applicable when the state or either county has imposed a water emergency, water watch, or any other drought condition calling for water conservation. This rule mandates that Vail's Grove residents:

- -Will not wash cars
- -Will not water their landscape with hoses or sprinklers
- -Will not wash down driveways or roadways

Failure to comply with the above will result in an Improper Use Fee by the Board for each occurrence.

We all recognize the need to conserve water during times of drought. It is just as important to use water wisely when the supply is plentiful. Some common sense measures to conserve water include:

- -Shut faucets off tightly. A small drip can waste 25 gallons per day.
- -Check all toilets for leakage. A bad toilet leak can waste as much as 200 gallons a day.

- -Don't run the faucet to get a cold drink. Place a container of water in the refrigerator.
- -Don't run the faucet while shaving or brushing your teeth.
- -Take shorter showers and half-full baths. Install low flow showerheads and faucets.
- -Run washing machine and dishwasher only when full. Don't wash dishes under a running faucet.
- -Don't cut the lawn too short, longer grass saves water.
- -Mulch around trees and plants to help retain moisture.

Health Considerations

There are some people who may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. EPA/CDC guidelines on the proper means to lessen the risk of infection by Cryptosporidium Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800) 426-4791.

About Lead

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead in your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Don't use hot water for drinking purposes. Additional information is available from Safe Drinking Water Hotline (800) 426-4791.

Definitions:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as possible.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

Variances and Exemptions: State permission not to meet an MCL or treatment technique under certain conditions. In 2001 Vail's Grove operated under a waiver from sampling synthetic organic compounds (SOC's). In 2002, SOC's were tested. SOC testing was done again in the

year 2005 and 2011. In 2008, Vail's Grove operated under a waiver from sampling synthetic organic compounds (SOC's).

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Nanograms per liter (ng/l): Corresponds to one part of liquid in one trillion parts of liquid (parts per trillion – ppt).

Picocuries per liter (pCi/L): Picocuries per liter is a measure of the radioactivity in water.

90th Percentile Value: The values reported for lead and copper represent the 90th percentile. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead and copper values detected at your water system.

NDL: No determined limit.

n/d: Not detected in routine laboratory analysis.

N/A: Not applicable.

LT or <: Less than GT or >: Greater than

BDL: Below detectable limits.

cc: Commissioner, New York State Department of Health Attn: Director, Bureau of Public Water Supply Protection Flanigan Square, 547 River Street, Room 400 Troy, New York 12180-2216

> Ms. Anne Bittner Putnam County Health Department One Geneva Road Brewster, New York 10509

> Northeast Laboratories of Danbury 129 Mill Street Berlin, CT 06037-9990

Beryllium	Calcium	Nitrate Nitrite	Barium	Arsenic	INORGANIC CH	Contenninents
7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l 7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	INORGANIC CHEMICALS-TABLE 1 Antimony 7/15/2013 mg/l	Ooke Unit
0.004mg/l	none	10.0mg/l 1.0mg/l	2.0mg/l	0.001mg/l	.003mg/l	NCIE OF SIGNATURE
<0.0003mg/l	64.9mg/l	2.23mg/l <0.01mg/l	.104mg/l	<0.001mg/l	<0.003mg/l	Detected level 7
Discharge from metal refineries and coil-burning factories; from electrical, aerospace and defense industries. Some people who drink water containing beryllium well in excess of the MCL over many	Discharge from run-off and septic systems. High calcium intake could result in skeletal problems and kidney or gallstones.	Runoff from fertilizer, leaching from septic tanks; sewage erosion of natural deposits. Infants below the age of 6 months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	linked to other health effects such as skin damage and circulatory problems. Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits. Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics and production wastes. Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer. EPA continues to research the health effect of low levels of arsenic, which is a mineral known to cause cancer in humans at high contents tions and in	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder. Some people who drink water containing Antimony well in excess of the MCL over many years could experience increases in blood cholesterol and decreases in blood sugar.	Table 1-Detected contaminants (Reported for 2013)
NO	NO	NO	No	NO	N O	Violation V

				years could develop intestinal lesions.	
Cadmium	7/15/2013 mg/l	0.005mg/l	<0.001mg/l	0.005mg/l <0.001mg/l Corrosion of galvanized pipes; erosion of natural deposits; discharge	ON
				from metal refineries, runoff from waste batteries and paints.	
				Some people who drink water containing cadmium in excess of the	
				MCL over many years could experience kidney damage.	

Nickel Selenium	Mercury	Sodium	Magnesium	Fluoride	Cyanide	Chromium	
7/15/2013 mg/l 7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	
0.1mg/l 0.05mg/l	.002mg/l	no limit	no standa	2.2mg/i	0.2mg/l	0.1mg/l	
<0.002mg/l <0.002mg/l	<0.0002mg/l	19.3mg/l	no standard 17.1mg/i	<0.10mg/l	<0.01mg/l	<0.001mg/l	
Discharge from petroleum and metal refineries, erosion of natural deposits from mines. Selenium is an essential nutrient. However, some people who	<0.0002mg/l Erosion of natural deposits; discharge from refineries and factories; runoff from landfills. Runoff from drop land. Some people who drink water containing mercury well in excess of the MCL over many years could experience kidney damage.	The 20 mg/l is a notification level rather than an MCL. Naturally occurring; road salt,water softeners,animal waste. Water containing more than 20mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium diets.	No standard established.	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Children may get mottled teeth.	Discharge from steel/metal factories; discharge from plastic and fertilizer factories. Some people who drink water containing cyanide well in excess of the MCL over many years could experience nerve damage or problems . with their thyroid.	Discharge from steel and pulp mills; erosion of natural deposits. Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.	MCL over many years could experience kidney damage.
NO O	NO.	NO	NO	NO	NO	NO	

drink water containing selenium in excess of the MCL over many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.		-	O.
	vith their circulation.	ience hair or fingernail losses, numbness in fingers or toes, or p	rink water containing selenium in ex

Copper	Lead	Thallium	Chloride	Zinc	Sulfate	Silver
7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l	7/15/2013 mg/l
1.0 mg/l	0.015 mg/l	0.002 mg/l	250.0 mg/l	5.0 mg/l	250.0mg/l	0.1mg/i
0.025mg/l	0.015 mg/l <0.001mg/l	<0.001mg/i	60.3mg/l	0.008mg/l	19.3mg/i	<0.002mg/l
Corrosion of household plumbing systems, erosion of natural deposits,	Corrosions of household plumbing systems, erosion of natural deposits. Infants and children who drink water containing lead in excess of the action level could experience delays in the physical or mental development. Children could show slight deficits in attention span and learning disabilities. Adults who drink this water over many years could develop kidney problems or high blood pressure. (see note 2)	Leaching from ore processing sites; discharge from electronics, glass and drug factories. Some people who drink water containing thallium in excess of the MCL over many years could experience hair loss, changes in the blood, or problems with their kidneys, intestines or liver.	Naturally occurring or indicative of road salt contamination. No health effects. The MCL for chloride is the level above which the taste of water may become objectionable. In addition, to the adverse taste effects, high chloride concentration levels in the water contribute to the deterioration of domestic plumbing and water heaters. Elevated chloride concentrations may also be associated with the presence of sodium in drinking water.		Naturally occurring. High concentrations of sulfate in drinking water have three effects: 1. water containing appreciable amounts of sulfate tends to form hard scales in boilers and heat exchanges, 2. sulfates cause taste effects, and 3. sulfates can cause laxative effects with excessive intake. The laxative effect of sulfates is usually noted in transient users of a water supply because people who are accustomed to high sulfate levels in drinking water have no adverse response. Diarrhea can be induced at sulfate levels greater than 500 mg/l but typically near 750 mg/l.	experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation. Naturally occurring. Discharge from photographic and radiographic processing, manufacturing of electronic products, jewelry making, plating and soldering. Some people who drink water containing silver in excess of MCL over many years could experience argyria or argyrosis, a permanent blue-gray discoloration of the skin, eyes, and mucous membranes.
ON	NO	NO	ON	O	O	O

NOTE 2- Table 1- Results for lead and copper

	manganese	ar
	7/15/2013 mg/i	are reported at 90th percentile 7/15/2013 mg/l 0.3 m
	0.3 mg/l*	ercentile 0.3 mg/l*
	<0.002mg/l	0.020mg/i
Nutrition Board of the National Research Council determined an estimated safe and adequate daily dietary intake of manganese to be 2000-5000 ug/l for adults. However, many people's diets lead them to consume even higher amounts of manganese, especially those who consume high amounts of vegetables or are vegaterian. The infant population is of greatest concern. It would be better if the drinking water were not used to make infant formula since it already contains iron and manganese. Excess manganese produces a brownish color in laundered goods and impairs the taste of tea, coffee, and other beverages. Concentrations may cause a dark brown or black stain on porcelain plumbing fixgtures. As with iron, manganese may form a coating on distribution pipes. These may slough off, causing brown blotches on laundered clothing or black particles in the water.	number of people will note the bitter astringent taste of iron. Also, at this concentration, it imparts a brownish color to laundered clothing and stains plumbing fixtures with a characteristic rust color. Staining can result at levels of 50 ug/l, lower than those detectable to taste buds. Therefore, the MCL of 300 ug/l represents a reasonable compromise as adverse effects are minimized at this level. Many multivitamins may contain 3000 or 4000 ug/l of iron per capsule. Naturally occurring, indicative of landfill contamination. The Food and	Naturally occurring. Iron has no health effects. At 1,000 ug/l a substantial
	N O	NO

Note #1 (Table 1)
Odor, pH, solids, color, turbidity, alkalinity, and hardness
were all tested and were within acceptable parameters.

* Combined mcI limits for iron plus manganese equals 0.5 mg/l Higher levels may be approved by the state.

RADIOLOGICAL CONTAMINANTS IN GROUNDWATER

Uranium Note 2 pCl/l 20 pCi/l 3.54pCi/l 0.87 Radium Note 2 pCi/l 20pCi/l 0.43pCi/l 0.83 226/228	Gross Alpha Note 2 pCi/l 15 pCi/l 3.69pCi/l 1.32 The source is erosion of natural deposits. NO The same health effects and dangers applicable to Beta radiation also applies to Alpha radiation.	Notes Date Unit MCIGOT Standard Detected level	NO NO Violation	ross Beta: the source of a eposits and man-made e naterials are radioactive kend beta radiations. Some atter containing beta and excess of the MCL over ave an increased risk of general personation of name same health effects are splicable to Beta radiation.	4.7pCi/l 3.69pCi/l 3.54pCi/l	15 pCi/l 20 pCi/l	pCi/I pCi/I	77 7 7	Gross Beta Gross Alpha Uranium Radium 226/228
Note 2 pCl/l 15 pCi/l 3.69pCi/l 1.32 The source is erosion of natural deposits. The same health effects and dangers applicable to Beta radiation also applies to Alpha radiation.			NO	Gross Beta: the source of decay of natural deposits and man-made emissions. Certain materials are radioactive known as photons and beta radiations. Some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of getting cancer.	4.7pCi/l	50 pCj/l	pCi/I	Notes 1,2,3	Gross Beta

(Note 1): Samples were taken on 3/15,5/13, 8/24 and 11/6, 2004. Results are reported as averages.
(Note 2): Millirems per year(MREM/yr): Measure of radiation absorbed by the body. Samples were taken 3/6,5/1,7/8 and 11/6, 2008.
(Note 3): If beta particles are detected at or below 50 pCi/l, the detected level is reported in pCi/l in order to provide consumers with a standard. The state considers 50 pCi/l to be the level of concern for beta particles.

MCIG OF STANDARD Defected level .66ug/l

(hformation

Violation

increased risk of gettting cancer. chlorination needed to kill harmful organisms. central nervous systems, and may have an experience problems with their liver, kidneys, in excess of the MCL. over many years may people who drink water containing TTHMs large amounts of organic matter. Some TTHMs are formed when source water contains The source is a by-product of drinking water

ON

Same as above

NO N

Bromo

7/15/2013 ug/l

50 ug/l

1.7 ug/l

Bromoform

7/15/203 ug/l

50 ug/l

1.4 ug/l

ane (TTM)

Dichlorometh

Same as above O

50 ug/l 6.66 ug/l

> See Note 1 O

(Note 1): The MCL for Total Trihalomethanes (TTHM is 100.0 ug/l)

Methanes

Total Trihalo-

7/15/2013 ug/l

o-methane

Dibromochlor

7/15/2013 ug/l

50 ug/l

2.9 ug/l

same as above

N_O

QA/QC sorrogates*** on 7/15/2013 bromofluorobenzene). Small percentages of these POC's were also detected (i.e 1,2 dichlorobenzene and

No MCL exists for these 2 POC compounds.

CONTRAINANT DATE MOI STANDARD DETECTED MAS

INFORMATION

HOLS.

TABLE 3

HALOACETIC ACIDS(HAA5's)

Bromchloro Acetic Aicd	5/24/2012	1.0 ug/l 1.4 ug/l	1.4 ug/l	HAA5's in our drinking water are a byproduct of the	O
Dibromo Acetic Acid	5/24/2012	1.0 UL/L 1.4 ug/l	1.4 ug/l	chlorination which is necessary to prevent coliform	O O
Total HAA5's	5/24/2012	1.0 ug/l 2.8 ug/l	2.8 ug/l	contamination.	S O
QA/QC Surrogates	5/24/2012	"95%"	2.5 ug/l	The MCL for HAA5 is the the sum of monochloroacetic	S O
2,3 DBPA				acid, dichloroacetic acid, trichloroacetic acid, bromo-	
				acetic acid, and dibromoacetic acid. The HAA5 MCL	
				is 0.06 mg/L. Two of the HAA5 have individual	
				MCLG's but there is no collective MCLG for this group	
				(40 CFR '41.53). The individual MCLG's are zero for	
				Dichloroacetic acid and 0.3 mg/l for Trichloroacetic	
				Acid. No MDL exists for QA/QC Surrogates.	